Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning
Year of publication: |
2022
|
---|---|
Authors: | McBride, Linden ; Barrett, Christopher B. ; Browne, Christopher ; Hu, Leiqiu ; Liu, Yanyan ; Matteson, David S. ; Ying, Sun ; Wen, Jiaming |
Published in: |
Applied economic perspectives and policy. - Hoboken, NJ : Wiley, ISSN 2040-5804, ZDB-ID 2529839-2. - Vol. 44.2022, 2, p. 879-892
|
Subject: | big data | humanitarian assistance | machine learning | poverty mapping | poverty prediction | Armut | Poverty | Künstliche Intelligenz | Artificial intelligence | Big Data | Big data | Unterernährung | Undernutrition | Armutsbekämpfung | Poverty reduction | Prognoseverfahren | Forecasting model | Humanitäre Hilfe | Humanitarian aid | Messung | Measurement |
-
Poverty from space : using high resolution satellite imagery for estimating economic well-being
Engstrom, Ryan, (2022)
-
Comparison of machine learning predictions of subjective poverty in rural China
Maruejols, Lucie Louise, (2023)
-
Constructing spatiotemporal poverty indices from big data
Njuguna, Christopher, (2017)
- More ...
-
Predicting poverty and malnutrition for targeting, mapping, monitoring, and early warning
McBride, Linden, (2021)
-
Well-Being Dynamics and Poverty Traps
Barrett, Christopher B., (2016)
-
Well-being dynamics and poverty traps
Barrett, Christopher B., (2016)
- More ...