Predicting stock realized variance based on an asymmetric robust regression approach
Year of publication: |
2023
|
---|---|
Authors: | Zhang, Yaojie ; He, Mengxi ; Zhao, Yuqi ; Hao, Xianfeng |
Published in: |
Bulletin of economic research. - Oxford : Wiley-Blackwell, ISSN 1467-8586, ZDB-ID 1473655-X. - Vol. 75.2023, 4, p. 1022-1047
|
Subject: | asymmetric effect | heterogeneous autoregressive realized volatility | out-of-sample forecasting | robust regression model | stock market volatility | Volatilität | Volatility | Regressionsanalyse | Regression analysis | Prognoseverfahren | Forecasting model | Börsenkurs | Share price | Schätzung | Estimation | ARCH-Modell | ARCH model | Aktienmarkt | Stock market | Robustes Verfahren | Robust statistics | Theorie | Theory | Kapitaleinkommen | Capital income | Varianzanalyse | Analysis of variance | Zeitreihenanalyse | Time series analysis |
-
Forecasting European stock volatility : the role of the UK
Gao, Jun, (2023)
-
Paye, Bradley S., (2012)
-
Discrete-time volatility forecasting : a quantile regression approach
Oliveira, Víctor Henriques, (2020)
- More ...
-
Forecasting stock return volatility using a robust regression model
He, Mengxi, (2021)
-
Climate policy uncertainty and the stock return predictability of the oil industry
He, Mengxi, (2022)
-
Out-of-sample prediction of Bitcoin realized volatility : do other cryptocurrencies help?
Yi, Yongsheng, (2022)
- More ...