Predicting tactical solutions to operational planning problems under imperfect information
Year of publication: |
2022
|
---|---|
Authors: | Larsen, Eric ; Lachapelle, Sébastien ; Bengio, Yoshua ; Frejinger, Emma ; Lacoste-Julien, Simon ; Lodi, Andrea |
Published in: |
INFORMS journal on computing : JOC ; charting new directions in operations research and computer science ; a journal of the Institute for Operations Research and the Management Sciences. - Linthicum, Md. : INFORMS, ISSN 1526-5528, ZDB-ID 2004082-9. - Vol. 34.2022, 1, p. 227-242
|
Subject: | deep learning | integer linear programming | stochastic programming | supervised learning | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Lernprozess | Learning process | Unvollkommene Information | Incomplete information | Stochastischer Prozess | Stochastic process |
-
Fast continuous and integer L-shaped heuristics through supervised learning
Larsen, Eric, (2024)
-
Two-stage stochastic linear programs with incomplete information on uncertainty
Ang, James, (2014)
-
Optimal information blending with measurements in the L2 sphere
Defourny, Boris, (2015)
- More ...
-
Machine learning for combinatorial optimization : a methodological tour d'horizon
Bengio, Yoshua, (2021)
-
Fast continuous and integer L-shaped heuristics through supervised learning
Larsen, Eric, (2024)
-
Reinforcement learning for freight booking control problems
Dumouchelle, Justin, (2024)
- More ...