Proactive customer retention management in a non-contractual B2B setting based on churn prediction with random forests
| Year of publication: |
2022
|
|---|---|
| Authors: | Gattermann-Itschert, Theresa ; Thonemann, Ulrich |
| Published in: |
Industrial marketing management : the international journal for industrial and high-tech firms. - New York, NY [u.a.] : Elsevier, ISSN 0019-8501, ZDB-ID 120124-4. - Vol. 107.2022, p. 134-147
|
| Subject: | Analytics | Customer relationship management | Machine learning | Marketing | Retail operations | Churn prediction | Beziehungsmarketing | Relationship marketing | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Lieferantenmanagement | Supplier relationship management | B-to-B-Marketing | Business-to-business marketing | Einzelhandel | Retail trade |
-
How training on multiple time slices improves performance in churn prediction
Gattermann-Itschert, Theresa, (2021)
-
Incorporating usage data for B2B churn prediction modeling
Sanchez Ramirez, Juliana, (2024)
-
A predict-and-optimize approach to profit-driven churn prevention
Gómez-Vargas, Nuria, (2025)
- More ...
-
How training on multiple time slices improves performance in churn prediction
Gattermann-Itschert, Theresa, (2021)
-
Using machine learning to include planners' preferences in railway crew scheduling optimization
Gattermann-Itschert, Theresa, (2023)
-
Operations Management : Konzepte, Methoden und Anwendungen
Thonemann, Ulrich, (2015)
- More ...