Probabilistic topic model for hybrid recommender systems : a stochastic variational Bayesian approach
| Year of publication: |
November-December 2018
|
|---|---|
| Authors: | Ansari, Asim ; Li, Yang ; Zhang, Jonathan Z. |
| Published in: |
Marketing science. - Catonsville, MD : INFORMS, ISSN 0732-2399, ZDB-ID 883054-X. - Vol. 37.2018, 6, p. 987-1008
|
| Subject: | hybrid recommendation models | personalized search | user-generated content | probabilistic topic models | big data | scalable inference | stochastic variational Bayes | Personalisierung | Personalization | Bayes-Statistik | Bayesian inference | Wahrscheinlichkeitsrechnung | Probability theory | Theorie | Theory | Stochastischer Prozess | Stochastic process | Big Data | Big data |
-
Ansari, Asim, (2019)
-
Speeding up MCMC by efficient data subsampling
Quiroz, Matias, (2015)
-
Financial distress prediction with optimal decision trees based on the optimal sampling probability
Chi, Guotai, (2024)
- More ...
-
Ansari, Asim, (2019)
-
Modeling Dynamic Heterogeneity using Gaussian Processes
Dew, Ryan, (2019)
-
A Bayesian Semiparametric Approach for Endogeneity and Heterogeneity in Choice Models
Li, Yang, (2019)
- More ...