Profiling readmissions using hidden Markov model : the case of congestive heart failure
| Year of publication: |
2021
|
|---|---|
| Authors: | Ben-Assuli, Ofir ; Heart, Tsipi ; Vest, Joshua R. ; Ramon-Gonen, Roni ; Shlomo, Nir ; Klempfner, Robert |
| Published in: |
Information systems management. - London [u.a.] : Taylor & Francis, ISSN 1934-8703, ZDB-ID 2069986-4. - Vol. 38.2021, 3, p. 237-249
|
| Subject: | Applying machine learning | congestive heart failure | Hidden Markov Models (HMM) | readmission | utilizing predictive analytics | Markov-Kette | Markov chain | Prognoseverfahren | Forecasting model | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence |
-
Profiling readmissions using Hidden Markov Model : the case of Congestive Heart Failure
Ben-Assuli, Ofir, (2021)
-
Classification of monetary and fiscal dominance regimes using machine learning techniques
Hinterlang, Natascha, (2022)
-
Enhance load forecastability : optimize data sampling policy by reinforcing user behaviors
Xie, Guangrui, (2021)
- More ...
-
Profiling readmissions using Hidden Markov Model : the case of Congestive Heart Failure
Ben-Assuli, Ofir, (2021)
-
On expert-machine partnership to predict mortality of congestive heart failure patients
Ben-Assuli, Ofir, (2024)
-
Ben-Assuli, Ofir, (2021)
- More ...