PyTimeVar : a python package for trending time-varying time series models
Year of publication: |
[2024]
|
---|---|
Authors: | Song, Mingxuan ; Sluis, Bernhard van der ; Lin, Yicong |
Publisher: |
Amsterdam, The Netherlands : Tinbergen Institute |
Subject: | time-varying | bootstrap | nonparametric estimation | boosted Hodrick-Prescott filter | power-law trend | score-driven | state-space | Zeitreihenanalyse | Time series analysis | Bootstrap-Verfahren | Bootstrap approach | Schätztheorie | Estimation theory | Zustandsraummodell | State space model | Nichtparametrisches Verfahren | Nonparametric statistics |
Extent: | 1 Online-Ressource (circa 42 Seiten) Illustrationen |
---|---|
Series: | Discussion paper / Tinbergen Institute. - Rotterdam [u.a.] : [Verlag nicht ermittelbar], ISSN 0929-0834, ZDB-ID 2435783-2. - Vol. TI 2024, 060 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Other identifiers: | hdl:10419/306743 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
PyTimeVar: A python package for trending time-varying time series models
Song, Mingxuan, (2024)
-
Measuring nonlinear Granger causality in mean
Song, Xiaojun, (2018)
-
Sieve bootstrap inference for time-varying coefficient models
Friedrich, Marina, (2021)
- More ...
-
Bootstrapping trending timevarying coefficient panel models with missing observations
Lin, Yicong, (2023)
-
Time-varying effects of housing attributes and economic environment on housing price
Friedrich, Marina, (2023)
-
Robust bootstrap inference for linear time-varying coefficient models: Some Monte Carlo evidence
Lin, Yicong, (2023)
- More ...