Quantum monte carlo for economics : stress testing and macroeconomic deep learning
Year of publication: |
2023
|
---|---|
Authors: | Skavysh, Vladimir ; Priazhkina, Sofia ; Guala, Diego ; Bromley, Thomas R. |
Published in: |
Journal of economic dynamics & control. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1889, ZDB-ID 717409-3. - Vol. 153.2023, p. 1-30
|
Subject: | Monte Carlo | Quantum computing | Computational methods | Stress testing | DSGE | Machine learning | Deep learning | Künstliche Intelligenz | Artificial intelligence | Monte-Carlo-Simulation | Monte Carlo simulation | Lernprozess | Learning process | Theorie | Theory | Bayes-Statistik | Bayesian inference | Prognoseverfahren | Forecasting model | Computerunterstützung | Computerized method | Simulation |
-
Reservoir computing vs. neural networks in financial forecasting
Georgopoulos, Spyros P., (2023)
-
Machine learning in agricultural economics
Baylis, Kathy, (2021)
-
A novel hybrid forecasting model with feature selection and deep learning for wind speed research
Chen, Xuejun, (2024)
- More ...
-
Quantum Monte Carlo for economics: Stress testing and macroeconomic deep learning
Skavysh, Vladimir, (2022)
-
Quantum Monte Carlo for economics : stress testing and macroeconomic deep learning
Skavysh, Vladimir, (2022)
-
Quantum Monte Carlo for Economics : Stress Testing and Macroeconomic Deep Learning
Priazhkina, Sofia, (2022)
- More ...