Quasi-asymmetry model for square tables with nominal categories
For an <italic>R</italic>×<italic>R</italic> square contingency table with nominal categories, the present paper proposes a model which indicates that the absolute values of log odds of the odds ratio for rows <italic>i</italic> and <italic>j</italic> and columns <italic>j</italic> and <italic>R</italic> to the corresponding symmetric odds ratio for rows <italic>j</italic> and <italic>R</italic> and columns <italic>i</italic> and <italic>j</italic> are constant for every <italic>i</italic>><italic>j</italic>><italic>R</italic>. The model is an extension of the quasi-symmetry model and states a structure of asymmetry of odds ratios. An example is given.
Year of publication: |
2012
|
---|---|
Authors: | Tahata, Kouji |
Published in: |
Journal of Applied Statistics. - Taylor & Francis Journals, ISSN 0266-4763. - Vol. 39.2012, 4, p. 723-729
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Saved in favorites
Similar items by person
-
Marginal inhomogeneity models for square contingency tables with nominal categories
Miyamoto, Nobuko, (2006)
-
Marginal asymmetry model for square contingency tables with ordered categories
Tahata, Kouji, (2015)
-
Saigusa, Yusuke, (2015)
- More ...