Random coefficient state-space model : estimation and performance in M3-M4 competitions
Year of publication: |
2022
|
---|---|
Authors: | Sbrana, Giacomo ; Silvestrini, Andrea |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 38.2022, 1, p. 352-366
|
Subject: | Approximate maximum likelihood | Forecast competitions | Forecasting | Kalman gain | Random coefficient state-space model | Zustandsraummodell | State space model | Prognoseverfahren | Forecasting model | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Schätztheorie | Estimation theory |
-
The RWDAR model : a novel state-space approach to forecasting
Sbrana, Giacomo, (2023)
-
l 1 - penalized likelihood smoothing of volatility processes allowing for abrupt changes
Neto, David, (2009)
-
Monte Carlo maximum likelihood estimation for generalized long-memory time series models
Mesters, G., (2016)
- More ...
-
Random switching exponential smoothing and inventory forecasting
Sbrana, Giacomo, (2014)
-
Sbrana, Giacomo, (2013)
-
Temporal aggregation of cyclical models with business cycle applications
Sbrana, Giacomo, (2012)
- More ...