Rational Decisions, Random Matrices and Spin Glasses
We consider the problem of rational decision making in the presence of nonlinear constraints. By using tools borrowed from spin glass and random matrix theory, we focus on the portfolio optimisation problem. We show that the number of ``optimal'' solutions is generically exponentially large: rationality is thus de facto of limited use. In addition, this problem is related to spin glasses with L\'evy-like (long-ranged) couplings, for which we show that the ground state is not exponentially degenerate.
Year of publication: |
1998-01
|
---|---|
Authors: | Galluccio, Stefano ; Bouchaud, Jean-Philippe ; Potters, Marc |
Institutions: | arXiv.org |
Saved in:
Saved in favorites
Similar items by person
-
Rational decisions, random matrices and spin glasses
Galluccio, Stefano, (1998)
-
Rotational invariant estimator for general noisy matrices
Jo\"el Bun, (2015)
-
Smile dynamics -- a theory of the implied leverage effect
Ciliberti, Stefano, (2008)
- More ...