Recurrent neural network GO-GARCH model for portfolio selection
Year of publication: |
2024
|
---|---|
Authors: | Burda, Martin ; Schroeder, Adrian K. |
Published in: |
Journal of time series econometrics. - Berlin : De Gruyter, ISSN 1941-1928, ZDB-ID 2493596-7. - Vol. 16.2024, 2, p. 67-81
|
Subject: | LSTM | machine learning | multivariate volatility forecasting | nonlinear time series | Volatilität | Volatility | Portfolio-Management | Portfolio selection | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory | ARCH-Modell | ARCH model | Nichtlineare Regression | Nonlinear regression | Multivariate Analyse | Multivariate analysis |
-
Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms
Khan, Farman Ullah, (2023)
-
Amado, Cristina, (2014)
-
Nõu, Anders, (2023)
- More ...
-
Parallel Constrained Hamiltonian Monte Carlo for BEKK model comparison
Burda, Martin, (2014)
-
Constrained Hamiltonian Monte Carlo in BEKK GARCH with targeting
Burda, Martin, (2015)
-
Essays in Semiparametric Econometrics and Panel Data Analysis
Burda, Martin, (2007)
- More ...