Regularizing Bayesian predictive regressions
Year of publication: |
2020
|
---|---|
Authors: | Feng, Guanhao ; Polson, Nicholas G. |
Published in: |
The journal of asset management. - Basingstoke : Palgrave Macmillan, ISSN 1470-8272, ZDB-ID 2209717-X. - Vol. 21.2020, 7, p. 591-608
|
Subject: | Bayesian predictive regression | Prior sensitivity analysis | Maximum a posteriori | Equity-premium predictability | Bond risk premia | Predictor selection | Prognoseverfahren | Forecasting model | Bayes-Statistik | Bayesian inference | Regressionsanalyse | Regression analysis | Risikoprämie | Risk premium | Kapitaleinkommen | Capital income | Sensitivitätsanalyse | Sensitivity analysis | Theorie | Theory | Anleihe | Bond | Schätzung | Estimation | Prognose | Forecast |
-
Is imperfection better? : evidence from predicting stock and bond returns
Lučivjanská, Katarína, (2018)
-
Mind the (convergence) gap: bond predictability strikes back!
Berardi, Andrea, (2019)
-
Investigating the expectation hypothesis and the risk premium dynamics : new evidence for Brazil
Caldeira, João F., (2020)
- More ...
-
Deep learning in characteristics-sorted factor models
Feng, Guanhao, (2024)
-
Deep Learning in Characteristics-Sorted Factor Models
Feng, Guanhao, (2020)
-
Regularizing Bayesian Predictive Regressions
Feng, Guanhao, (2017)
- More ...