Relevant States and Memory in Markov Chain Bootstrapping and Simulation
Year of publication: |
2013
|
---|---|
Authors: | Cerqueti, Roy ; Falbo, Paolo ; Pelizzari, Cristian |
Institutions: | Volkswirtschaftliche Fakultät, Ludwig-Maximilians-Universität München |
Subject: | Bootstrapping | Information Theory | Markov chains | Optimization | Simulation |
Extent: | application/pdf |
---|---|
Series: | |
Type of publication: | Book / Working Paper |
Classification: | C15 - Statistical Simulation Methods; Monte Carlo Methods ; C61 - Optimization Techniques; Programming Models; Dynamic Analysis ; C63 - Computational Techniques ; C65 - Miscellaneous Mathematical Tools |
Source: |
-
Egloff, Daniel, (2003)
-
Relevant states and memory in Markov chain bootstrapping and simulation
Cerqueti, Roy, (2017)
-
Sustainability, optimality, and viability in the Ramsey model
BONNEUIL, Noël, (2009)
- More ...
-
Relevant States and Memory in Markov Chain Bootstrapping and Simulation
Cerqueti, Roy, (2013)
-
Relevant States and Memory in Markov Chain Bootstrapping and Simulation
Cerqueti, Roy, (2010)
-
Optimal Dimension of Transition Probability Matrices for Markov Chain Bootstrapping
Cerqueti, Roy, (2009)
- More ...