Reliable computation of a multiple integral involved in the neutron star theory
The following multiple integral is involved in the neutron star theory:τ(ε,v)=1ω(ε)∫0π/2dθsin(θ)∫0∞dnn2∫0∞dph(n,p,θ,ε,v)whereh(n,p,θ,ε,v)=ψ(z)ϕ(n−ε−z)+ψ(−z)ϕ(n−ε+z)−ψ(z)ϕ(n+ε−z)−ψ(z)ϕ(n+ε+z)andz=p2+(vsin(θ))2,ψ(x)=1expx+1,ϕ(x)=xexpx−1.ω(ε) is a normalization function.
Year of publication: |
2006
|
---|---|
Authors: | Jézéquel, F. ; Rico, F. ; Chesneaux, J.-M. ; Charikhi, M. |
Published in: |
Mathematics and Computers in Simulation (MATCOM). - Elsevier, ISSN 0378-4754. - Vol. 71.2006, 1, p. 44-61
|
Publisher: |
Elsevier |
Subject: | Neutron star | Numerical validation | Multiple integral | Gauss–Legendre method | CESTAC method | Discrete Stochastic Arithmetic |
Saved in:
Saved in favorites
Similar items by subject
-
A Valid Scheme to Evaluate Fuzzy Definite Integrals by Applying the CADNA Library
Araghi, Mohammad Ali Fariborzi, (2017)
-
The application of order statistics to multiple integration over a canonical simplex
Ping, Sun, (2012)
-
A procedure with stepsize control for solving n one-dimensional IVPs
Salkuyeh, Davod Khojasteh, (2008)
- More ...