The advancing speed, scale, and sophistication of new technologies and data capabilities that aid or disrupt our interconnected world are unprecedented. While generations have relied consistently on technologies and tools to improve societies, we now are in an era where new technologies and data reshape societies and geopolitics in novel and even unanticipated ways. As a result, governments, industries, and other stakeholders must work together to remain economically competitive, sustain social welfare and public safety, protect human rights and democratic processes, and preserve global peace and stability.Emerging technologies also promise new abilities to make our increasingly fragile global society more resilient. To sustain this progress, nations must invest in research, expand their digital infrastructures, and increase digital literacy so that their people can compete and flourish in this new era. Yet, at the same time, no nation or international organization is able to keep pace with the appropriate governance structures needed to grapple with the complex and destabilizing dynamics of these emerging technologies. Governments, especially democratic governments, must work to build and sustain the trust in the algorithms, infrastructures, and systems that could underpin society. The world must now start to understand how technology and data interact with society and how to implement solutions that address these challenges and grasp these opportunities. Maintaining both economic and national security and resiliency requires new ways to develop and deploy critical and emerging technologies, cultivate the needed human capital, build trust in the digital fabric with which our world will be woven, and establish norms for international cooperation.The Commission on the Geopolitical Impacts of New Technologies and Data (GeoTech Commission) was established by the Atlantic Council in response to these challenges and seeks to develop recommendations to achieve these strategic goals. Specifically, the GeoTech Commission examined how the United States, along with other nations and global stakeholders, can maintain science and technology (S&T) leadership, ensure the trustworthiness and resiliency of physical and software/informational technology (IT) supply chains and infrastructures, and improve global health protection and wellness. The GeoTech Commission identified key recommendations and practical steps forward for the US Congress, the presidential administration, executive branch agencies, private industry, academia, and like-minded nations.The GeoTech DecadeData capabilities and new technologies increasingly exacerbate social inequality and impact geopolitics, global competition, and global opportunities for collaboration. The coming decade—the “GeoTech Decade”—must address the sophisticated but potentially fragile systems that now connect people and nations, and incorporate resiliency as a necessary foundational pillar of modern life. Additionally, the rapidity of machines to make sense of large datasets and the speed of worldwide communications networks means that any event can escalate and cascade quickly across regions and borders—with the potential to further entrench economic inequities, widen disparities in access to adequate healthcare, as well as to hasten increased exploitation of the natural environment. The coming years also will present new avenues for criminals and terrorists to do harm; authoritarian nations to monitor, control, and oppress their people; and diplomatic disputes to escalate to armed conflict not just on land, sea, and in the air, but also in space and cyberspace.Domestically and internationally, the United States must promote strategic initiatives that employ data and new technologies to amplify the ingenuity of people, diversity of talent, strength of democratic values, innovation of companies, and the reach of global partnerships.Geopolitical impacts of new technologies and data collectionsCritical technologies that will shape the GeoTech Decade—and in which the United States and its allies must maintain global S&T leadership—can be grouped into six areas. All technologies in these categories will have broad—and interdependent—effects on people and the way they live and work, on global safety and security, and on the health of people and our planet. Technologies that enable a digital economy: communications and networking, data science, and cloud computing: collectively provide the foundation for secure transmission of data for both the public and private sector and establish robust economies of ideas, resources, and talent. Technologies for intelligent systems: artificial intelligence, distributed sensors, edge computing, and the Internet of Things: add new capabilities for understanding changes in the world in both physical and digital environments. The resulting data may supplement human intelligence, social engagements, and other sources of insight and analysis. In select, defined areas, intelligent systems may enhance human governance of complex systems or decisions. Technologies for global health and wellness: biotechnologies, precision medicine, and genomic technologies: help create new fields of research, development, and practical solutions that promote healthy individuals and communities. Nations and health care organizations can use advances in genomics, or more broadly omics,1 to provide sentinel surveillance capabilities with respect to natural or weaponized pathogens. Sentinel surveillance2 can provide early detection, data about how a new element is appearing and growing, and information to guide our response. Technologies that enlarge where people, enterprises, and governments operate: space technologies, undersea technologies: commercial companies and nations around the world are deploying mega-constellations of satellites, or fleets of autonomous ocean platforms, with advanced, persistent surveillance and communications capabilities. Large-scale Earth observation data is important for monitoring the world’s atmosphere, oceans, and climate as a foundation for understanding evolving health and environmental risks and increasing the economic efficiencies in transportation, agriculture, and supply chain robustness. Technologies that augment human work: autonomous systems, robotics, and decentralized energy methods: collectively provide the foundation to do work in dangerous or hazardous environments without risk to human lives, while at the same time augmenting human teams, potentially prompting long-term dislocations in national workforces, and requiring additional workforce talent for new technology areas. Foundational technologies: quantum information science (QIS), nanotechnology, new materials for extreme environments, and advanced microelectronics: collectively provide the foundation for solving classes of computational problems, catalyzing next-generation manufacturing, setting standards, creating new ways to monitor the trustworthiness of digital and physical supply chains, as well as potentially presenting new challenges and opportunities to communications security that underpin effective governance and robust economies.In addition to the technology itself, countries and organizations must learn to harness and protect the human element—by recruiting and upskilling workers with the needed skill sets for today and training the next generation with the right knowledge for tomorrow. There is great competition globally for digitally-skilled workers, and some countries or companies invest large amounts to develop or recruit this talent. When like-minded nations collaborate in S&T areas, the talent resources can produce greater benefits than possible otherwise. This requires governments to ensure their entire populations gain the needed digital literacy skills and have the means and opportunities to participate in the global digital economy. Making the whole greater than the sum of the parts represents the important global need for international collaboration.The broad range of important S&T areas requires several forms of collaboration. In multiple key areas, such as QIS and advanced microelectronics, several nations already have significant government investments underway, and current results span a growing number of application areas. Collaborating on research and coordinating national investments among like-minded nations could benefit all participants