Robust Causal Learning for the Estimation of Average Treatment Effects
Year of publication: |
2022
|
---|---|
Authors: | Huang, Yiyan ; Leung, Cheuk Hang ; Wu, Qi ; Yan, Xing ; Ma, Shumin ; Yuan, Zhiri ; Wang, Dongdong ; Huang, Zhixiang |
Publisher: |
[S.l.] : SSRN |
Subject: | Kausalanalyse | Causality analysis | Schätztheorie | Estimation theory | Robustes Verfahren | Robust statistics |
Extent: | 1 Online-Ressource (9 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | In: 2022 International Joint Conference on Neural Networks (IJCNN 2022 Oral) Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments April 26, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4206322 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations
Farrell, Max, (2015)
-
Are Bartik Regressions Always Robust to Heterogeneous Treatment Effects?
de Chaisemartin, Clément, (2021)
-
Robust Estimation for Average Treatment Effects
Hill, Jonathan B., (2013)
- More ...
-
Towards Balanced Representation Learning for Credit Policy Evaluation
Huang, Yiyan, (2023)
-
The Causal Learning of Retail Delinquency
Huang, Yiyan, (2021)
-
Understanding Distributional Ambiguity via Non-Robust Chance Constraint
Ma, Shumin, (2020)
- More ...