Robust causality test of infinite variance processes
Year of publication: |
2020
|
---|---|
Authors: | Akashi, Fumiya ; Taniguchi, Masanobu ; Monti, Anna Clara |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 216.2020, 1, p. 235-245
|
Subject: | Generalized empirical likelihood | Granger causality | Nonparametric hypothesis testing | Self-weighting | Kausalanalyse | Causality analysis | Schätztheorie | Estimation theory | Statistischer Test | Statistical test | Nichtparametrisches Verfahren | Nonparametric statistics | Momentenmethode | Method of moments | Statistische Methodenlehre | Statistical theory |
-
A consistent nonparametric test for nonlinear causality : specification in time series regression
Nishiyama, Yoshihiko, (2011)
-
Testing for separability in structural equations
Lu, Xun, (2014)
-
Testing unconfoundedness assumption using auxiliary variables
Cai, Zongwu, (2019)
- More ...
-
Robust portfolio estimation under skew-normal return processes
Taniguchi, Masanobu, (2015)
-
Robust Regression on Stationary Time Series : A Self-Normalized Resampling Approach
Akashi, Fumiya, (2018)
-
Change-Point Detection in Autoregressive Models with no Moment Assumptions
Akashi, Fumiya, (2018)
- More ...