Robust estimation of conditional risk measures using machine learning algorithm for commodity futures prices in the presence of outliers
Year of publication: |
2021
|
---|---|
Authors: | Byers, John W. ; Popova, I. ; Simkins, Betty J. |
Published in: |
Journal of commodity markets. - Amsterdam : Elsevier, ISSN 2405-8513, ZDB-ID 3067450-5. - Vol. 24.2021, p. 1-18
|
Subject: | Conditional value at risk | Risk capital | Robust estimation | Unsupervised machine learning | Value at risk | Risikomaß | Risk measure | Künstliche Intelligenz | Artificial intelligence | Robustes Verfahren | Robust statistics | Risiko | Risk | Prognoseverfahren | Forecasting model | Schätztheorie | Estimation theory | Rohstoffderivat | Commodity derivative |
-
Gibbs posterior inference on value-at-risk
Syring, Nicholas, (2019)
-
Forecasting Bitcoin risk measures : a robust approach
Trucíos, Carlos, (2019)
-
A new unbiased additive robust volatility estimation using extreme values of asset prices
Shaik, Muneer, (2020)
- More ...
-
A comparative study of the probability of default for global financial firms
Câmara, António, (2012)
-
Câmara, António, (2014)
-
Popova, Ivilina, (2015)
- More ...