Robust monitoring machine : a machine learning solution for out-of-sample R2-hacking in return predictability monitoring
| Year of publication: |
2023
|
|---|---|
| Authors: | Yae, James ; Luo, Yang |
| Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 9.2023, 1, Art.-No. 94, p. 1-28
|
| Subject: | Machine learning | Monitoring | Out-of-sample R2-hacking | Return predictability | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Kapitalmarktrendite | Capital market returns | Prognose | Forecast |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.1186/s40854-023-00497-z [DOI] |
| Classification: | C52 - Model Evaluation and Testing ; C53 - Forecasting and Other Model Applications ; c55 ; c58 ; G17 - Financial Forecasting |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Stock Returns Forecasting via Machine Learning with Average Windows Forecasts
Ho, Tsung-Wu, (2022)
-
Machine Learning Panel Data Regressions with an Application to Nowcasting Price Earnings Ratios
Babii, Andrii, (2020)
-
Macroeconomic Extrapolation, Machine Learning, and Equity Risk Premium Forecast
Lu, Yueliang (Jacques), (2022)
- More ...
-
Yae, James, (2022)
-
Green credit and regional industrial structure upgrading : Evidence from China
Li, Ran, (2024)
-
Resonance or resistance? : the dual impact of green brand ritual on customer engagement behavior
Guo, Rui, (2025)
- More ...