Rule generation for classification : scalability, interpretability, and fairness
| Year of publication: |
2025
|
|---|---|
| Authors: | Röber, Tabea E. ; Lumadjeng, Adia C. ; Akyüz, M. Hakan ; Bi̇rbi̇l, Ş. İlker |
| Published in: |
Computers & operations research : an international journal. - Amsterdam [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 1499736-8. - Vol. 183.2025, Art.-No. 107163, p. 1-18
|
| Subject: | Fairness | Interpretability | Linear programming | Machine learning | Rule generation | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Mathematische Optimierung | Mathematical programming | Gerechtigkeit | Justice | Klassifikation | Classification |
-
Machine learning approaches for early DRG classification and resource allocation
Gartner, Daniel, (2015)
-
A classifier to decide on the linearization of mixed-integer quadratic problems in CPLEX
Bonami, Pierre, (2022)
-
An efficient FLANN model with CRO-based gradient descent learning for classification
Naik, Bighnaraj, (2016)
- More ...
-
Finding regions of counterfactual explanations via robust optimization
Maragno, Donato, (2024)
-
Mixed-integer optimization with constraint learning
Maragno, Donato, (2025)
-
Solving Variational Inequalities Defined on a Domain with Infinitely Many Linear Constraints
Fang, Shu-Cherng, (2010)
- More ...