Scalable reinforcement learning for multiagent networked systems
Year of publication: |
2022
|
---|---|
Authors: | Qu, Guannan ; Wierman, Adam ; Li, Na |
Published in: |
Operations research. - Linthicum, Md. : INFORMS, ISSN 1526-5463, ZDB-ID 2019440-7. - Vol. 70.2022, 6, p. 3601-3628
|
Subject: | networked systems | reinforcement learning | Stochastic Models | stochastic systems | Stochastischer Prozess | Stochastic process | Lernen | Learning | Theorie | Theory | Agentenbasierte Modellierung | Agent-based modeling | Lernprozess | Learning process | Netzwerk | Network | Unternehmensnetzwerk | Business network | Soziales Netzwerk | Social network |
-
Mean-Field Multi-Agent Reinforcement Learning : A Decentralized Network Approach
Gu, Haotian, (2021)
-
It's a match! : simulating compatibility-based learning in a network of networks
Schlaile, Michael, (2018)
-
Agents of change and the approximation of network outcomes : a simulation study
Wichmann, Bruno, (2015)
- More ...
-
Chen, Jin, (2020)
-
Chen, Jin, (2020)
-
Wang, Luyao, (2021)
- More ...