Semi-parametric financial risk forecasting incorporating multiple realized measures
Year of publication: |
2024
|
---|---|
Authors: | Peiris, Rangika ; Wang, Chao ; Gerlach, Richard ; Minh-Ngoc Tran |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 24.2024, 12, p. 1823-1837
|
Subject: | Expected shortfall | Markov chain Monte Carlo | Realized measures | Semi-parametric | Value-at-risk | Risikomaß | Risk measure | Monte-Carlo-Simulation | Monte Carlo simulation | Nichtparametrisches Verfahren | Nonparametric statistics | Markov-Kette | Markov chain | Prognoseverfahren | Forecasting model | Theorie | Theory | Portfolio-Management | Portfolio selection | Messung | Measurement | Schätzung | Estimation |
-
Gerlach, Richard, (2020)
-
Tail risk forecasting with semiparametric regression models by incorporating overnight information
Chen, Cathy W. S., (2024)
-
A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting
Wang, Chao, (2024)
- More ...
-
A long short-term memory enhanced realized conditional heteroskedasticity model
Wang, Chao, (2025)
-
A dynamic leverage stochastic volatility model
Nguyen, Hoang, (2023)
-
Subsampling Sequential Monte Carlo for static Bayesian models
Gunawan, David, (2019)
- More ...