Semiparametric Deconvolution with Unknown Error Variance
Deconvolution is a useful statistical technique for recovering an unknown density in the presence of measurement error. Typically, the method hinges on stringent assumptions about teh nature of the measurement error, more specifically, that the distribution is *entirely* known. We relax this assumption in the context of a regression error component model and develop an estimator for the unkinown density. We show semi-uniform consistency of the estimator and provide Monte Carlo evidence that demonstrates the merits of the method.