Semiparametric Estimation with Mismeasured Dependent Variables: An Application to Duration Models for Unemployment Spells
This paper considers mismeasurement of the dependent variable in a general linear index model, which includes qualitative choice models, proportional and additive hazard models, and censored models as special cases. The monotone rank estimator of Cavanagh and Sherman [1998] is shown to be consistent in the presence of any mismeasurement process that obeys a simple stochastic-dominance condition. The emphasis is on measurement error which is independent of the covariates, but extensions to covariate-dependent measurement error are also discussed. We consider the proportional hazard duration model in detail and apply the estimator to mismeasured unemployment duration data from the Survey of Income and Program Participation (SIPP).
Year of publication: |
1999
|
---|---|
Authors: | ABREVAYA, Jason ; HAUSMAN, Jerry A. |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 1999, 55-56, p. 243-275
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Abrevaya, Jason, (2004)
-
Testing for Causal Effects in a Generalized Regression Model With Endogenous Regressors
Abrevaya, Jason, (2010)
-
Misclassification of the dependent variable in a discrete-response setting
Hausman, Jerry A., (1998)
- More ...