Sentiment Spin : Attacking Financial Sentiment with Gpt-3
In this study, we explore the susceptibility of financial sentiment analysis to adversarial attacks that manipulate financial texts. With the rise of AI readership in the financial sector, companies are adapting their language and disclosures to fit AI processing better, leading to concerns about the potential for manipulation. In the finance literature, keyword-based methods, such as dictionaries, are still widely used for financial sentiment analysis due to their perceived transparency. However, our research demonstrates the vulnerability of keyword-based approaches by successfully generating adversarial attacks using the sophisticated transformer model, GPT-3