Separate and/or simultaneous generations of non-linear functions inherent in non-ohmic resistivities
In this paper, it is described that a multiple-function generator can be realized without employing any separate function-generating units and selector-logics. According to this proposal, a uniformly continuous non-linearity o f a non-ohmic resistance is first expressed by a linear combination of several interesting non-linear functions with respect to the same input variable. Then, the desired functions can be obtained by summing up algebraically the linearly independent non-linear currents passing through every non-ohmic resistance with their proper weights. It is noticeable that an adjustment of the weights will permit different non-linear functions separately and/or simultaneously. Details of this system will be furnished with quantitative investigations and experimental results.
Year of publication: |
1976
|
---|---|
Authors: | Kobayashi∗, Yasuhiro ; Ohkita, Masaaki ; Inoue, Michio ; Nakamura, Masao |
Published in: |
Mathematics and Computers in Simulation (MATCOM). - Elsevier, ISSN 0378-4754. - Vol. 18.1976, 1, p. 51-61
|
Publisher: |
Elsevier |
Saved in:
Saved in favorites
Similar items by person
-
Application of the Haar functions to solution of differential equations
Ohkita, Masaaki, (1983)
-
Fractional power approximations of elliptic integrals and bessel functions
Kobayashi, Yasuhiro, (1978)
-
Fractional power approximation and its generation
Kobayashi, Yasuhiro, (1976)
- More ...