Simulation Based Inference in Models with Heterogeneity
In this paper we discuss the usefulness, for models with heterogeneity, of simulation techniques in inference procedures, like maximum likelihood method, generalized moments method or pseudo maximum likelihood methods. These procedures are studied from the point of view of consistency, asymptotic normality, convergence rates and possible asymptotic bias. We carefully distinguish the case where the simulations are different for all the observations from the case where they are identical.
Year of publication: |
1991
|
---|---|
Authors: | GOURIEROUX, Christian ; MONFORT, Alain |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 1991, 20-21, p. 69-107
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Saved in favorites
Similar items by person
-
Microinformation, Nonlinear Filtering and Granularity
Gagliardini, Patrick, (2010)
-
Pitfalls in the Estimation of Continuous Time Interest Rate Models : The Case of the CIR Model
GOURIEROUX, Christian, (2013)
-
Simulation-based inference: A survey with special reference to panel data models
Gourieroux, Christian, (1993)
- More ...