Small-loss bounds for online learning with partial information
Year of publication: |
2022
|
---|---|
Authors: | Lykouris, Thodoris ; Sridharan, Karthik ; Tardos, Éva |
Published in: |
Mathematics of operations research. - Hanover, Md. : INFORMS, ISSN 1526-5471, ZDB-ID 2004273-5. - Vol. 47.2022, 3, p. 2186-2218
|
Subject: | bandit algorithms | contextual bandits | feedback graphs | first-order bounds | high probability | online learning | partial information | regret bounds | semi-bandits | small-loss bounds | Lernprozess | Learning process | Unvollkommene Information | Incomplete information | Begrenzte Rationalität | Bounded rationality | E-Learning | E-learning | Algorithmus | Algorithm | Entscheidung unter Unsicherheit | Decision under uncertainty | Wahrscheinlichkeitsrechnung | Probability theory | Graphentheorie | Graph theory |
-
A note on the advantage of context in Thompson sampling
Byrd, Michael, (2021)
-
Learning in repeated auctions with budgets : regret minimization and equilibrium
Balseiro, Santiago R., (2018)
-
Learning in repeated auctions with budgets : regret minimization and equilibrium
Balseiro, Santiago R., (2019)
- More ...
-
Empirical Entropy, Minimax Regret and Minimax Risk
Rakhlin, Alexander, (2013)
-
Empirical entropy, minimax regret and minimax risk
Rakhlin, Alexander, (2013)
-
Contextual search in the presence of adversarial corruptions
Krishnamurthy, Akshay, (2023)
- More ...