Solving Kolmogorov PDEs without the curse of dimensionality via deep learning and asymptotic expansion with Malliavin calculus
Alternative title: | Asymptotic expansion and deep neural networks overcome the curse of dimensionality in the numerical approximation of Kolmogorov partial differential equations with nonlinear coefficients |
---|---|
Year of publication: |
[2023] ; This version : May 9, 2023
|
Authors: | Takahashi, Akihiko ; Yamada, Toshihiro |
Publisher: |
[Tokyo] : Center for Advanced Research in Finance |
Subject: | Asymptotic expansion | Deep learning | Kolmogorov PDEs | Malliavin calculus | Curse of dimensionality | Theorie | Theory | Stochastischer Prozess | Stochastic process | Lernprozess | Learning process |
Extent: | 1 Online-Ressource (circa 28 Seiten) |
---|---|
Series: | CARF working paper. - Tokyo : Center for Advanced Research in Finance, ZDB-ID 3079869-3. |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Takahashi, Akihiko, (2023)
-
Takahashi, Akihiko, (2021)
-
Deep asymptotic expansion with weak approximation
Iguchi, Yuga, (2021)
- More ...
-
Kato, Takashi, (2013)
-
Kato, Takashi, (2012)
-
An Asymptotic Expansion for Forward-Backward SDEs: A Malliavin Calculus Approach
Takahashi, Akihiko, (2012)
- More ...