Solving optimal stopping problems under model uncertainty via empirical dual optimisation
| Year of publication: |
2022
|
|---|---|
| Authors: | Belomestny, Denis ; Hübner, Tobias ; Krätschmer, Volker |
| Published in: |
Finance and stochastics. - Berlin : Springer, ISSN 1432-1122, ZDB-ID 1467022-7. - Vol. 26.2022, 3, p. 461-503
|
| Subject: | Concentration inequalities | Covering numbers | Dual representation | Empirical dual optimisation | Generative models | Model uncertainty | Optimal stopping | Suchtheorie | Search theory | Mathematische Optimierung | Mathematical programming | Risiko | Risk | Entscheidung unter Unsicherheit | Decision under uncertainty | Modellierung | Scientific modelling |
-
Solving optimal stopping problems under model uncertainty via empirical dual optimisation
Belomestny, Denis, (2022)
-
Data-driven non-parametric robust control under dependence uncertainty
Bayraktar, Erhan, (2024)
-
Risk-adaptive local decision rules
Royset, Johannes O., (2025)
- More ...
-
Minimax theorems for American options without time-consistency
Belomestny, Denis, (2019)
-
Solving optimal stopping problems under model uncertainty via empirical dual optimisation
Belomestny, Denis, (2022)
-
Optimal stopping under probability distortions
Belomestny, Denis, (2017)
- More ...