Some strong limit theorems of weighted sums for negatively dependent generalized Gaussian random variables
In this paper, we study strong convergence of weighted sums , where {Xn,n[greater-or-equal, slanted]1} is a sequence of negative dependence, generalized Gaussian random variables and ank, n[greater-or-equal, slanted]1, k[greater-or-equal, slanted]1 is an array of real numbers such that, for [beta]>0 and every n[greater-or-equal, slanted]1.
Year of publication: |
2007
|
---|---|
Authors: | Amini, M. ; Zarei, H. ; Bozorgnia, A. |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 77.2007, 11, p. 1106-1110
|
Publisher: |
Elsevier |
Keywords: | Negatively dependent Generalized Gaussian random variables Strong law of large numbers Weighted sums |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Some maximal inequalities for quadratic forms of negative superadditive dependence random variables
Eghbal, N., (2010)
-
On the Kolmogorov inequalities for quadratic forms of dependent uniformly bounded random variables
Eghbal, N., (2011)
-
Complete convergence of weighted sums under negative dependence
Zarei, H., (2011)
- More ...