Spatial autoregression model: strong consistency
Let denote the Gauss-Newton estimator of the parameter ([alpha],[beta]) in the autoregression model Zij=[alpha]Zi-1,j+[beta]Zi,j-1-[alpha][beta]Zi-1,j-1+[var epsilon]ij. It is shown in an earlier paper that when converges in distribution to a bivariate normal random vector. A two-parameter strong martingale convergence theorem is employed here to prove that almost surely when .
Year of publication: |
2003
|
---|---|
Authors: | Bhattacharyya, B. B. ; Ren, J. -J. ; Richardson, G. D. ; Zhang, J. |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 65.2003, 2, p. 71-77
|
Publisher: |
Elsevier |
Keywords: | Spatial autoregression Unit roots Two-parameter martingale |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Strong consistency of a sieve estimator for the variance in nonlinear regression
Bhattacharyya, B. B., (1992)
-
Inconsistent M-estimators: nonlinear regression with multiplicative error
Bhattacharyya, B. B., (1992)
-
Strong consistency in nonlinear regression
Richardson, G. D., (1990)
- More ...