Stationary vine copula models for multivariate time series
Year of publication: |
2022
|
---|---|
Authors: | Nagler, Thomas ; Krüger, Daniel ; Min, Aleksey |
Published in: |
Journal of econometrics. - Amsterdam [u.a.] : Elsevier, ISSN 0304-4076, ZDB-ID 184861-6. - Vol. 227.2022, 2, p. 305-324
|
Subject: | Pair-copula | Dependence | Bootstrap | Forecasting | Markov chain | Sequential maximum likelihood | Zeitreihenanalyse | Time series analysis | Markov-Kette | Multivariate Verteilung | Multivariate distribution | Prognoseverfahren | Forecasting model | Bootstrap-Verfahren | Bootstrap approach | Multivariate Analyse | Multivariate analysis | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Schätztheorie | Estimation theory |
-
Modeling dependence between loss triangles with hierarchical Archimedean copulas
Abdallah, Anas, (2015)
-
Modeling time-varying tail dependence, with application to systemic risk forecasting
Hoga, Yannick, (2022)
-
l 1 - penalized likelihood smoothing of volatility processes allowing for abrupt changes
Neto, David, (2009)
- More ...
-
Vine Copula Based Dependence Modeling in Sustainable Finance
Czado, Claudia, (2022)
-
Vine copula based dependence modeling in sustainable finance
Czado, Claudia, (2022)
-
Commodity chains in the Cuban food economy
Krüger, Daniel, (2007)
- More ...