Statistical inference for discretely observed Markov jump processes
Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Markov chain Monte Carlo procedure. When the maximum likelihood estimator does not exist, an estimator can be obtained by using a penalized likelihood function or by the Markov chain Monte Carlo procedure with a suitable prior. The methodology and its implementation are illustrated by examples and simulation studies. Copyright 2005 Royal Statistical Society.
Year of publication: |
2005
|
---|---|
Authors: | Bladt, Mogens ; Sørensen, Michael |
Published in: |
Journal of the Royal Statistical Society Series B. - Royal Statistical Society - RSS, ISSN 1369-7412. - Vol. 67.2005, 3, p. 395-410
|
Publisher: |
Royal Statistical Society - RSS |
Saved in:
Saved in favorites
Similar items by person
-
Simulation of multivariate diffusion bridges
Bladt, Mogens, (2014)
-
Bladt, Mogens, (2009)
-
Simple simulation of diffusion bridges with application to likelihood inference for diffusions
Bladt, Mogens, (2010)
- More ...