Stochastic loss reserving with mixture density neural networks
| Year of publication: |
2022
|
|---|---|
| Authors: | Al-Mudafer, Muhammed Taher ; Avanzi, Benjamin ; Taylor, Greg ; Wong, Bernard |
| Published in: |
Insurance. - Amsterdam : Elsevier, ISSN 0167-6687, ZDB-ID 8864-X. - Vol. 105.2022, p. 144-174
|
| Subject: | Loss reserving | Neural network | Mixture density network | Distributional forecasting | Machine learning | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Statistische Verteilung | Statistical distribution | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Stochastischer Prozess | Stochastic process | Verlust | Loss | Bayes-Statistik | Bayesian inference |
-
Deeptriangle : a deep learning approach to loss reserving
Kuo, Kevin, (2019)
-
Loss reserving models : granular and machine learning forms
Taylor, Greg, (2019)
-
Bayesian probability of default models with Langevin dynamics
Conti, Andrea, (2025)
- More ...
-
Avanzi, Benjamin, (2019)
-
Avanzi, Benjamin, (2019)
-
SynthETIC : an individual insurance claim simulator with feature control
Avanzi, Benjamin, (2021)
- More ...