Stochastic reactive power market with volatility of wind power considering voltage security
While wind power generation is growing rapidly around the globe; its stochastic nature affects the system operation in many different aspects. In this paper, the impact of wind power volatility on the reactive power market is taken into account. The paper presents a novel stochastic method for optimal reactive power market clearing considering voltage security and volatile nature of the wind. The proposed optimization algorithm uses a multiobjective nonlinear programming technique to minimize market payment and simultaneously maximize voltage security margin. Considering a set of probable wind speeds, in the first stage, the proposed algorithm seeks to minimize expected system payment which is summation of reactive power payment and transmission loss cost. The object of the second stage is maximization of expected voltage security margin to increase the system loadability and security. Finally, in the last stage, a multiobjective function is presented to schedule the stochastic reactive power market using results of two previous stages. The proposed algorithm is applied to IEEE 14-bus test system. As a benchmark, Monte Carlo Simulation method is utilized to simulate the actual market of given period of time to evaluate results of the proposed algorithm, and satisfactory results are achieved.
Year of publication: |
2011
|
---|---|
Authors: | Kargarian, A. ; Raoofat, M. |
Published in: |
Energy. - Elsevier, ISSN 0360-5442. - Vol. 36.2011, 5, p. 2565-2571
|
Publisher: |
Elsevier |
Subject: | Stochastic reactive power market clearing | Wind power generation volatility | Expected system payment | Expected voltage security margin | Monte Carlo simulation |
Saved in:
Online Resource
Saved in favorites
Similar items by subject
-
Khorramdel, Benyamin, (2012)
-
Evaluation of offshore project development under two fiscal regime in Indonesia
Mardiana, Dwi Atty, (2023)
-
Woo, Hyun-Soo, (2023)
- More ...
Similar items by person