Strongly convergent homogeneous approximations to inhomogeneous Markov jump processes and applications
Year of publication: |
2025
|
---|---|
Authors: | Bladt, Martin ; Peralta, Oscar |
Published in: |
Mathematics of operations research. - Hanover, Md. : INFORMS, ISSN 1526-5471, ZDB-ID 2004273-5. - Vol. 50.2025, 1, p. 334-355
|
Subject: | pathwise convergence | phase–type distributions | pure jump processes | strong approximation | uniform acceleration | Stochastischer Prozess | Stochastic process | Schätztheorie | Estimation theory | Markov-Kette | Markov chain | Optionspreistheorie | Option pricing theory | Wirtschaftliche Konvergenz | Economic convergence | Monte-Carlo-Simulation | Monte Carlo simulation |
-
Parameter estimation of the Heston volatility model with jumps in the asset prices
Gruszka, Jarosław, (2023)
-
A generalized Schwartz model for energy spot prices : estimation using a particle MCMC method
Brix, Anne Floor, (2018)
-
Maneesoonthorn, Worapree, (2018)
- More ...
-
Approximation of ruin probabilities via Erlangized scale mixtures
Peralta, Oscar, (2018)
-
Parisian types of ruin probabilities for a class of dependent risk-reserve processes
Bladt, Mogens, (2019)
-
Multivariate matrix-exponential affine mixtures and their applications in risk theory
Cheung, Eric C. K., (2022)
- More ...