Supervised classification using probabilistic decision graphs
A new model for supervised classification based on probabilistic decision graphs is introduced. A probabilistic decision graph (PDG) is a graphical model that efficiently captures certain context specific independencies that are not easily represented by other graphical models traditionally used for classification, such as the Naïve Bayes (NB) or Classification Trees (CT). This means that the PDG model can capture some distributions using fewer parameters than classical models. Two approaches for constructing a PDG for classification are proposed. The first is to directly construct the model from a dataset of labelled data, while the second is to transform a previously obtained Bayesian classifier into a PDG model that can then be refined. These two approaches are compared with a wide range of classical approaches to the supervised classification problem on a number of both real world databases and artificially generated data.
Year of publication: |
2009
|
---|---|
Authors: | Nielsen, Jens D. ; Rumí, Rafael ; Salmerón, Antonio |
Published in: |
Computational Statistics & Data Analysis. - Elsevier, ISSN 0167-9473. - Vol. 53.2009, 4, p. 1299-1311
|
Publisher: |
Elsevier |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Accurate lead time demand modeling and optimal inventory policies in continuous review systems
Cobb, Barry R., (2015)
-
Estimating mixtures of truncated exponentials in hybrid bayesian networks
Rumí, Rafael, (2006)
-
Inference in hybrid Bayesian networks
Langseth, Helge, (2009)
- More ...