Supply chain network design under profit maximization and oligopolistic competition
In this paper, we model the supply chain network design problem with oligopolistic firms who are involved in the competitive production, storage, and distribution of a homogeneous product to multiple demand markets. The profit-maximizing firms select both the capacities associated with the various supply chain network activities as well as the product quantities. We formulate the governing Nash-Cournot equilibrium conditions as a variational inequality problem and identify several special cases of the model, notably, a generalization of a spatial oligopoly and a classical oligopoly problem to include design capacity variables. The proposed computational approach, which is based on projected dynamical systems, fully exploits the network structure of the problems and yields closed form solutions at each iteration. In order to illustrate the modeling framework and the algorithm, we also provide solutions to a spectrum of numerical supply chain network oligopoly design examples. This paper makes a contribution to game theoretic modeling of competitive supply chain network design problems in an oligopolistic setting.
Year of publication: |
2010
|
---|---|
Authors: | Nagurney, Anna |
Published in: |
Transportation Research Part E: Logistics and Transportation Review. - Elsevier, ISSN 1366-5545. - Vol. 46.2010, 3, p. 281-294
|
Publisher: |
Elsevier |
Keywords: | Profit-maximizing supply chains Supply chain design Network oligopolies Game theory Nash equilibria Variational inequalities Projected dynamical systems |
Saved in:
Saved in favorites
Similar items by person
-
Supply chain network economics : dynamics of prices, flows and profits
Nagurney, Anna, (2006)
-
Computational comparisons of spatial price equilibrium methods
Nagurney, Anna, (1987)
-
An algorithm for the single commodity spatial price equilibrium problem
Nagurney, Anna, (1986)
- More ...