Sustainable supply chain decision-making in the automotive industry : a data-driven approach
Year of publication: |
2024
|
---|---|
Authors: | Zareian Beinabadi, Hanieh ; Baradaran, Vahid ; Komijan, Alireza Rashidi |
Published in: |
Socio-economic planning sciences : the international journal of public sector decision-making. - Amsterdam [u.a.] : Elsevier Science, ISSN 0038-0121, ZDB-ID 1491145-0. - Vol. 95.2024, Art.-No. 101908, p. 1-18
|
Subject: | Artificial intelligence (AI) | Automobile industry | Data driven decision making | Data envelopment analysis (DEA) | Optimized hybrid neural networks | Sustainable development | Kfz-Industrie | Automotive industry | Data-Envelopment-Analyse | Data envelopment analysis | Lieferkette | Supply chain | Künstliche Intelligenz | Artificial intelligence | Neuronale Netze | Neural networks | Entscheidung | Decision | Nachhaltige Entwicklung | Nachhaltigkeit | Sustainability | Big Data | Big data |
-
Emrouznejad, Ali, (2024)
-
Digital technologies as enablers of supply chain sustainability in an emerging economy
Akbari, Mohammadreza, (2022)
-
Assessing sustainability of supply chains by double frontier network DEA : a big data approach
Badiezadeh, Taliva, (2018)
- More ...
-
Saemi, Saeed, (2022)
-
Khiabani, Amir, (2023)
-
An integrated supply chain model for predicting demand and supply and optimizing blood distribution
Niakan, Pooria Bagher, (2024)
- More ...