We show that small switching costs can have surprisingly dramatic effects in infinitely repeated games if these costs are large relative to payoffs in a single period. This shows that the results in Lipman and Wang [2000] do have analogs in the case of infinitely repeated games. We also discuss whether the results here or those in Lipman–Wang [2000] imply a discontinuity in the equilibrium outcome correspondence with respect to small switching costs. We conclude that there is not a discontinuity with respect to switching costs but that the switching costs do create a discontinuity with respect to the length of a period.