Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume
Year of publication: |
2021
|
---|---|
Authors: | Antulov-Fantulin, Nino ; Guo, Tian ; Lillo, Fabrizio |
Published in: |
Decisions in economics and finance : a journal of applied mathematics. - Milano : Springer Italia, ISSN 1129-6569, ZDB-ID 2023516-1. - Vol. 44.2021, 2, p. 905-940
|
Subject: | Econometrics | Machine learning | Cryptocurrency markets | Temporal mixture ensemble | Virtuelle Währung | Virtual currency | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Ökonometrie |
-
Machine learning and the cross-section of cryptocurrency returns
Cakici, Nusret, (2024)
-
Hybrid metaheuristic algorithm methods and econometric models in prediction of dogecoin price
Farahani, Milad Shahvaroughi, (2025)
-
Cryptocurrency trading : a comprehensive survey
Fang, Fan, (2022)
- More ...
-
ESG2Risk : A Deep Learning Framework from ESG News to Stock Volatility Prediction
Guo, Tian, (2020)
-
Guo, Tian, (2024)
-
Epidemic centrality — is there an underestimated epidemic impact of network peripheral nodes?
Šikić, Mile, (2013)
- More ...