The central limit theorem on spaces of positive definite matrices
A central limit theorem is obtained for orthogonally invariant random variables on n, the space of n - n real, positive definite symmetric matrices. The derivation requires the Taylor expansion of the spherical functions for the general linear group GL(n, R). This extends from the case n = 3 a result of Terras (J. Multivariate Anal. 23 (1987), 13-36).
Year of publication: |
1989
|
---|---|
Authors: | Richards, Donald St. P. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 29.1989, 2, p. 326-332
|
Publisher: |
Elsevier |
Keywords: | spherical functions central limit theorem symmetric spaces Helgason-Fourier transform heat equation orthogonal group zonal polynomials |
Saved in:
Saved in favorites
Similar items by person
-
Entropy inequalities for some multivariate distributions
Peddada, Shyamal Das, (1991)
-
Compact group actions, spherical bessel functions, and invariant random variables
Gross, Kenneth I., (1987)
-
Positive definite symmetric functions on finite-dimensional spaces II
Richards, Donald St. P., (1985)
- More ...