The Effect of Doping Mose2 by Clusters of Noble Metals on its Adsorption for Nh3
This work investigates the effect of noble metal doping of MoSe2 on its adsorption of ammonia (NH3) gas. Pristine and noble metal doped MoSe2 structures are examined computationally using density functional theory (DFT). Clusters of timers of each Pt, Au, and Ag along with their combination are utilized for doping. The influence of doping MoSe2 structure on its adsorption energy and distance of NH3 gas, density of states (DOS), charge transfer between NH3 and the MoSe2 structures, and band structure is explored. The adsorption capacity of the doped structures is greatly enhanced due to incorporation of noble metals. Herein, the magnitude of adsorption energy increases and the adsorption distance deceases for NH3 gas. Consequently, the sensitivity is improved in comparison to the pristine structure. This study shows that noble metal doping of MoSe2 by clusters of trimers can be a useful approach for developing sensitive NH3 gas detectors