The efficiency of ensemble classifiers in predicting the Johannesburg stock exchange All-Share index direction
Year of publication: |
2019
|
---|---|
Authors: | Mokoaleli-Mokoteli, Thabang ; Ramsumar, Shaun ; Vadapalli, Hima |
Published in: |
Journal of financial management, markets and institutions. - Singapore : World Scientific Publishing, ISSN 2282-717X, ZDB-ID 2942225-5. - Vol. 7.2019, 2, p. 1950001-1-1950001-18
|
Subject: | Ensemble classifiers | random forest | k-nearest neighbor | logistic regression | stock index direction | support vector machines | Aktienindex | Stock index | Prognoseverfahren | Forecasting model | Mustererkennung | Pattern recognition | Klassifikation | Classification | Börsenhandel | Stock exchange trading | Südafrika | South Africa |
-
Machine-learning classifiers for imbalanced tornado data
Trafalis, Theodore B., (2014)
-
Salehi, Mahdi, (2016)
-
Forecasting stock index returns using ARIMA-SVM, ARIMA-ANN and ARIMA-random forest hybrid models
Kumar, Manish, (2014)
- More ...
-
Mokoaleli-Mokoteli, Thabang, (2005)
-
Capital structure, profitability and firm value: panel evidence of listed firms in Kenya
Kodongo, Odongo, (2014)
-
Mokoaleli-Mokoteli, Thabang, (2019)
- More ...