The geometry of implementation: a necessary and sufficient condition for straightforward games (*)
We characterize games which induce truthful revelation of the players' preferences, either as dominant strategies (straightforward games) or in Nash equilibria. Strategies are statements of individual preferences on Rn. Outcomes are social preferences. Preferences over outcomes are defined by a distance from a bliss point. We prove that g is straightforward if and only if g is locally constant or dictatorial (LCD), i.e., coordinate-wise either a constant or a projection map locally for almost all strategy profiles. We also establish that: (i) If a game is straightforward and respects unanimity, then the map g must be continuous, (ii) Straightforwardness is a nowhere dense property, (iii) There exist differentiable straightforward games which are non-dictatorial. (iv) If a social choice rule is Nash implementable, then it is straightforward and locally constant or dictatorial.
Year of publication: |
1997
|
---|---|
Authors: | Chichilnisky, G. ; Heal, G. M. |
Published in: |
Social Choice and Welfare. - Springer. - Vol. 14.1997, 2, p. 259-294
|
Publisher: |
Springer |
Saved in:
Saved in favorites
Similar items by person
-
Option values and endogenous uncertainty in ESOPs, MBOs and asset-backed loans
Chichilnisky, G., (1995)
-
Markets for tradable carbon dioxide emission quotas : principles and practice
Chichilnisky, Graciela, (2000)
-
Equity and efficiency in environmental markets : global trade in carbon dioxide emissions
Chichilnisky, Graciela, (2000)
- More ...