The 'pathology' of the Natural Conjugate Prior Density in the Regression Model
In a Bayesian analysis of the linear regression model, one may have prior information on the error variance. If one incorporates this kind of information in a natural conjugate prior density, under certain conditions the posterior mean of the coefficients on which one is informative is equal to a constrained least squares estimator. The value of the posterior covariance matrix is also studied. We discuss and illustrate how to avoid getting posterior results too close to the “pathological” results summarized above.
Year of publication: |
1991
|
---|---|
Authors: | BAUWENS, Luc |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 1991, 23, p. 49-64
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Saved in favorites
Similar items by person
-
Bayesian full information analysis of simultaneous equation models using integration by Monte Carlo
Bauwens, Luc, (1984)
-
The "pathology" of the natural conjugate prior density in the regression model
Bauwens, Luc, (1991)
-
Econometric analysis of intra-daily trading activity on the Tokyo Stock Exchange
Bauwens, Luc, (2006)
- More ...