The preconditioned variational methods for solving large linear systems
The implementation of the Preconditioned Conjugate Gradient method for the solution of large linear systems arising from the discretization of differential operators, requires the predetermination of only one iteration parameter. The numerical determination of the optimal value of this constant parameter, involve the spectral bounds of some matrices and can be obtained in O(N2) sine function evaluations, where 1/N is the discretization mesh size. It is shown that this parameter can be chosen in a stable manner in O(1) operations per iteration, if it is allowed to vary with the iteration index from information derived from the gradient parameters.
Year of publication: |
1985
|
---|---|
Authors: | Demetriou, I.C. ; Evans, D.J. |
Published in: |
Mathematics and Computers in Simulation (MATCOM). - Elsevier, ISSN 0378-4754. - Vol. 27.1985, 4, p. 365-372
|
Publisher: |
Elsevier |
Saved in:
Saved in favorites
Similar items by person
-
An adaptive algorithm for least squares piecewise monotonic data fitting
Vassiliou, E., (2005)
-
A linearly distributed lag estimator with r-convex coefficients
Vassiliou, E.E., (2010)
-
Fast solution of implicit methods for linear hyperbolic equations
Evans, D.J., (1982)
- More ...