The Promise of Machine Learning for Patent Landscaping
Year of publication: |
[2021]
|
---|---|
Authors: | Toole, Andrew A. ; Pairolero, Nicholas A. ; Forman, James ; Giczy, Alexander V. |
Publisher: |
[S.l.] : SSRN |
Subject: | Künstliche Intelligenz | Artificial intelligence | Patent | Patentrecht | Patent law |
Extent: | 1 Online-Ressource (9 p) |
---|---|
Series: | USPTO Economic Working Paper ; No. 2020-1 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments March 1, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3555834 [DOI] |
Classification: | O3 - Technological Change; Research and Development ; C01 - Econometrics |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Gender diversity and patent quality : evidence from Chinese patent data
Zhang, Zhijie, (2023)
-
Structural condition of combinatorial innovation through patent ability AI analysis
Shirasaka, Hajime, (2021)
-
Alvarez-Risco, Aldo, (2021)
- More ...
-
Using Intellectual Property Data to Measure Cross-border Knowledge Flows
Dubbert, Jake, (2019)
-
Using intellectual property data to measure cross-border knowledge flows
Dubbert, Jacob, (2022)
-
Identifying artificial intelligence (AI) invention : a novel AI patent dataset
Giczy, Alexander V., (2022)
- More ...